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Electron Scattering without Spin Sums
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Using the spacetime algebra formulation of the Dirac equation, we demonstrate
how to perform cross-section calculations following a method suggested by
Hestenes (1982). Instead of an S-matrix, we use an operator that rotates the initial
states into the scattered states. By allowing the scattering operator to become a
function of the initial spin, we can neatly handle spin-dependent calculations.
When the operator is independent of spin, we can provide manifestly spin-
independent results. We use neither spin basis nor spin sums, instead handling
the spin orientation directly. As examples, we perform spin-dependent calculations
in Coulomb scattering to second order, and briefly consider more complicated
calculations in QED.

1. INTRODUCTION

Calculation of spinor scattering cross sections usually involves compli-
cated abstract calculations with gamma matrices. In this paper, we perform
cross-section calculations in a more transparent and intuitive way. We incorpo-
rate the spin orientation directly rather than summing over spins and using
spin projection operators. This streamlines the calculation of spin-dependent
results and makes it clear when results are independent of spin. Our method
is most easily applied to single-electron scattering, which we discuss first,
but we follow with a brief discussion of how to handle multiparticle scattering.

The starting point for our approach is the spacetime algebra formulation
of Dirac theory. The spacetime algebra (STA) is the geometric (Clifford)
algebra of Minkowski spacetime, first developed by Hestenes (1966, 1975,
1982). The formulation of Dirac theory within the algebra replaces the matri-
ces of the conventional theory with multivectors. The two formulations are
entirely equivalent, but the STA approach brings out the geometric structure
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leading to more physically transparent calculations. We briefly summarize
the STA formulation below and then explain a method for performing cross-
section calculations first demonstrated by Hestenes (1982). We extend and
clarify this work, handling spin dependence in a natural way.

2. SPACETIME ALGEBRA AND THE DIRAC EQUATION

Throughout we shall make use of the geometric algebra. We present a
brief summary of the STA below to clarify our notation and conventions
(Hestenes, 1966; Hestenes and Sobczyk, 1984).

We shall use the four orthogonal basis vectors of spacetime gm, where
g2

0 5 1 and g2
k 5 21 for k 5 1, 2, 3. The geometric algebra has an associative

product, and the basis vectors then satisfy the Dirac algebra

gm ? gn [ 1–2 (gmgn 1 gngm) 5 diag(1222)

The antisymmetric part of the product defines the outer product

gm ∧ gn [ 1–2 (gmgn 2 gngm)

By repeated multiplication of the basis vectors, we can build up the 16 basis
elements of STA multivectors:

1 {gm} {gm ∧ gn} {Igm} I

scalar vectors bivectors pseudovectors pseudoscalar

We can do a space-time split of a vector into the g0 frame by multiplying
by g0. For example, the momentum p is split as follows:

pg0 5 p ? g0 1 p ∧ g0 5 E 1 p 5 p0 1 pigig0

Bold letters are now used for relative 3-vectors (spacetime bivectors).
Restricted Lorentz transformations are spacetime rotations and can be per-
formed by use of a rotor, which can be written R 5 6 exp(B/2). Here B is
a bivector in the plane of the rotation and .B. determines the amount of
rotation. The rotation of a multivector M is then given by

M → RMR̃

In the STA, spinors are represented using the even subalgebra, which
has the required eight degrees of freedom. The minimally coupled form of
the Hestenes’ Dirac equation is

ĵ¹cg0 2 mc 5 eAcg0

Here ĵ is an operator that multiplies on the right by an arbitary reference
spatial bivector S so that
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ĵc [ cS

The spinor c can be decomposed as

c 5 r1/2 eIb/2 LU

where L and U are rotors for a boost and spatial rotation respectively, r is
a scalar, and the b-factor determines the rest ratio of particles and antiparticles.
So in the STA approach, the spinor directly encodes a Lorentz transformation
and a propability density. The rotor U rotates the arbitrary reference plane
S into the rest spin bivector observable of the electron

Ŝ 0 [ USŨ

and the boost L gives the momentum

p 5 mLg0L̃

We can also boost the rest spin bivector to define the relativistic spin bivector

Ŝ 5 LŜ 0L̃ 5 r21cSc̃

Positive- and negative-energy plane wave solutions are given as usual by

c(1) 5 u( p)e2ĵp?x and c(2) 5 v( p)eĵp?x

and the energy projection operators are

L6(c) 5
1

2m
(mc 6 pcg0)

3. THE FEYNMAN PROPAGATOR

The Feynman propagator SF is the Greens’ function for the Dirac equation
that propagates negative-energy waves into the past and positive-energy waves
into the future. As a Greens’ function, it satisfies

ĵ¹xSF (x 2 x8)c(x8)g0 2 mSF (x 2 x8)c(x8) 5 d4(x 2 x8)c(x8)

and an integral solution to the Dirac equation is given by

c(x) 5 ci (x) 1 e # d 4x8 SF (x 2 x8)A(x8)c(x8)g0 (1)

where ci satisfies the free-particle equation. Taking the Fourier transform,
we have

pSF ( p)cg0 2 mSF ( p)c 5 c

SF (x 2 x8) 5 # d 4p
(2p)4 SF ( p)e2ĵp?(x2x8)
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Operating on both sides with the energy projection operator L+, we can solve
for the momentum-space Feynman propagator:

( p2 2 m2)SF( p)c 5 pcg0 1 mc

⇒ SF ( p)c 5
pcg0 1 mc

p2 2 m2 1 ĵe
(2)

The ĵe ensures causality: positive-energy waves propagate into the future and
negative-energy waves into the past. Fourier-transforming back and per-
forming the integral over dE, we have

SF (x 2 x8)c

5 22mĵ # d 3p
2Ep(2p)3 [u(t 2 t8)L+(c)e2ĵp?(x2x8) 1 u(t8 2 t)L2(c)e ĵp?(x2x8)]

(3)

where E 5 1!p2 1 m2.

4. ELECTRON SCATTERING

For scattering calculation, we write the wavefunction as the sum of an
incoming plane wave and a scattered wave, c 5 ci 1 cdiff, where cdiff is the
solution at late times given by

cdiff(x) 5 22mĵe # d 4x8 # d 3p
2Ep(2p)3 L+[A(x8)c(x8)g0]e2ĵp?(x2x8)

We can write this as a sum over final states

cdiff(x) 5 # d 3pf

2Ef (2p)3 cf (x)

where the final states are plane waves,

cf (x) [ cf e2ĵpf?x [ 2ĵe # d 4x8 [pf A(x8)c(x8) 1 mA(x8)c(x8)g0]e2ĵpf?(x2x8)

(4)

To generate the Born series perturbative solution, we iterate (1). The first-
order Born approximation amounts to simply replacing c(x8) by ci (x8). For
plane waves of particles, we have
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c(x) 5 ce2ĵp?x and mcg0 5 pc

cf 5 2ĵe # d 4x8 [pf A(x8) 1 A(x8)pi] cieĵq?x8

5 2ĵe[pf A(q) 1 A(q)pi]ci , q [ pf 2 pi

In general, we define a scattering operator Sfi by

cf 5 Sfici

This rotates and dilates the initial states into the final states. The f and i
indices label the initial and final momenta and the initial spin, so in general
Sfi 5 S fi( pf , pi , Ŝi). However Sfi does not depend on the final spin, instead
the final spin is determined from the initial spin by a rotation encoded in Sfi.

Since Sfi consists of a rotation and dilation, it is convenient to decompose
it as

Sfi 5 r1/2
fi Rfi

where Rfi is a rotor. The rfi factor determines the cross section, as discussed
in the next section. The rotor Rfi rotates states with momentum pi into states
with momentum pf. It also rotates the initial spin into the final spins by

Ŝf 5 Rfi Ŝi R̃fi

The rest spins are therefore related by

Ŝ 0
f 5 L̃f Ŝf Lf 5 L̃f Rfi Ŝi R̃fi Lf 5 L̃f Rfi Li Ŝ 0

i L̃i R̃fi Lf

We define the rest spin scattering operator

Ufi [ L̃f Rfi Li , Ŝ 0
f 5 Ufi Ŝ 0

i Ũfi

The cross section and rest spin scattering operator contain all the information
about scattering of states with initial momentum pi and spin Ŝi into final
states with momentum pf.

The external line Feynman propagator is given by (3) and ensures that
Sfi is of the form

Sfi 5 2ĵ( pf M 1 Mpi) (5)

where in the Born approximation example, M 5 eA(q). However, in general
M can depend on ĵ, in which case we can write

Sfici 5 2ĵ( pf [Mr 1 ĵMj] 1 [Mr 1 ĵMj]pi)ci
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where Mj and Mr are independent of ĵ. Using ĵci 5 ciS 5 Ŝici and the fact
that Ŝi and pi commute, we can write this as

Sfi 5 2ĵ( pf M 1 Mpi)

where now M 5 Mr 1 MjŜi depends on the initial spin. We can therefore
convert dependence on the ‘imaginary’ ĵ into dependence on the physical
spin bivector.

5. CROSS SECTIONS

The scattering rate into the final states per unit volume per unit time is
given by

Wfi 5
rf

2mVT
, rf 5 .Sfi.2ri 5 rfiri

The cross section is defined as

ds 5
Wfi

Target density 3 Incident flux

For elastic scattering, we have

Sfi 5 2ĵ2pd(Ef 2 Ei)Tfi, .Sfi.2 5 2pTd(Ef 2 Ei).Tfi.2

With a target density of 1/V and an incident flux of .Ji. 5 ri.pi./m, we have

ds 5
p

.pi.
d(Ef 2 Ei).Tfi.2

This is readily extended to positron scattering and to more complicated cases.

6. COULUMB SCATTERING

Coulomb scattering is a useful test case where the vector potential is
given by

A(x) 5
2Ze
4p.x.

g0

Taking the Fourier transform, we have

A(q) 5 2
2pZe

q2 d(Ef 2 Ei)g0
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and M 5 eA(q) in the first Born approximation. Writing

Sfi 5 2ĵ2pd(Ef 2 Ei)Tfi

and using energy conservation, we have

Tfi 5 2
Ze2

q2 (2E 1 q)

so that the formula for the cross section becomes

ds 5 1Ze2

q2 2
2

p
.pi.

d(Ef 2 Ei)(4E 2 2 q2)
d 3pf

2Ef (2p)3

Using d 3pf 5 .pf .Ef dE fdVf , we recover the Mott cross section

1 ds
dVf

2
Mott

5
Z 2a2

q4 (4E 2 2 q2) 5
Z 2a2

4p2b2 sin4(u/2)
[1 2 b2sin2(u/2)]

where q2 5 (pf 2 pi)2 5 2p2(1 2 cos u) and b 5 .p./E. The derivation is
manifestly independent of initial spin, and the cross section is therefore spin
independent. If we had instead used the conventional spin sums method, this
would have been far from clear.

The final and initial spins will be related by the rest spin scattering
operator Ufi, where

Ufi } Lf Li 1 L̃f L̃i } (E 1 m)2 1 pf pi

If Ufi rotates by an angle d in the B̂ plane (B̂ 2 5 21), it is given by

Ufi 5 edB̂/2 5 cos(d/2) 1 B̂ sin(d/2)

The rotation is therefore in the pf ∧ pi plane and by an angle d given by

tan d/2 5
.^Ufi&2.
^Ufi&

5
.pf ∧ pi.

(E 1 m)2 1 pf ? pi
5

sin u
(E 1 m)/(E 2 m) 1 cos u

7. SECOND-ORDER COULUMB SCATTERING

Second-order Coulomb scattering is interesting, as it is spin-dependent,
though the calculation is now rather more involved. To avoid problems with
divergent integrals, we replace the potential with the screened potential

A(x) 5 2
e2l.x.Ze
4p.x.

g0

and obtain the Coulomb result in the limit as l goes to zero (Dalitz, 1951;
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Itzykson and Zuber, 1980). For this potential, the first-order analysis above
can be applied with M given by

eA(q) 5 2
2pZe2

l 2 1 q2 d(Ef 2 Ei)g0

To iterate to second order, (4) is used, substituting

c(x8) 5 ci e2ĵpi?x8 1 e # d 4x9 # d 4k
(2p)4

kA(x9) 1 A(x9)pi

k2 2 m2 1 ĵe
ci e ĵx9?(k2pi) e2ĵk?x8

giving the extra contribution to M

M 8 5 e2 # d 4x8 # d 4x9 # d 4k
(2p)4 A(x8)

kA(x9) 1 A(x9)pi

k2 2 m2 1 ĵe
e ĵx8?(pf2k) e ĵx9?(k2pi)

Performing the x8 and x9 integrations and using one of the resultant d-
functions, we have

M 5 2pd(Ef 2 Ei)MT

where the extra contribution to MT is

M 8T 5 e2 # d 3k
(2p)3

a0( pf 2 k)a0(k 2 pi)
k2 2 m2 1 ĵe

g0[kg0 1 g0 pi]

a0( p) 5 # d 3x e2p?xg0 ? A(x) 5
2Ze

l2 1 p2

Using

k2 2 m2 5 p2
i 2 k2

and the integrals

I1 1 1–2 (pi 1 pf)I2

5 # d 3k
(2p)3

1 1 k
[(pf 2 k)2 1 l2][(pi 2 k)2 1 l2](p2

i 2 k2 1 ĵe)

we have

M 8T 5 Z 2 e4[g0
1–2 (pi 1 pf)I2 1 ( pi 1 g0 E )I1]

We take the limit l → 0, and the total MT to second order is then

MT 5
2Ze2

q2 g0 1 Z 2 e4[(Eg0 2 1–2 [ pf 1 pi])I2 1 ( pi 1 g0 E )I1]
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where the integrals are (Itzykson and Zuber, 1980)

I1 5
2ĵ

16p.p.3 sin2(u/2)
ln

2.p.sin(u/2)
l

I2 5
1

16p.p.3 cos2(u/2) Hp[sin(u/2) 2 1]
2 sin2(u/2)

2 ĵ ln
l

2.p.J 1
I1

cos2(u/2)

This time M has some ĵ dependence and we write I1 5 (A 1 C )ĵ and I2 5
B 1 Cĵ, where A, B, and C are scalars. Replacing the ĵ dependence with Ŝi

dependence, we have

MT 5 g0F2
Ze2

q2 1 EZ 2 e4{B 1 (2C 1 A)Ŝi}G
1 Z 2 e4F pi (AŜi 2 B) 2

1
2

q(B 1 CŜi)G
The term proportional to q cancels in the calculation of Tfi. Using the result that

pf pi 1 m2 5 E(2E 1 q) 2 p2 2 pf pi

we have

Tfi 5 (2E 1 q)F2
Ze2

q2 1 2EZ 2 e4(A 1 C )ŜiG
1 Z 2 e4(p2 1 pf pi)(B 2 AŜi)

Keeping terms up to a3, the cross section is governed by

.Tfi.2 5 (4E 2 2 q2)
Z 2 e4

q4 2
4Z 3 e6

q2 [EB(p2 1 pf ? pi) 1 mA(pi ∧ pf) ? Ŝ 0
i ]

where Ŝ 0
i is the initial rest spin. The divergent parts of the integrals have

canceled out and we are only left with the finite terms B and

A 5
ln sin (u/2)

16p.p.3 cos2(u/2)

We could obtain the cross section for unpolarized scattering by averaging
over the initial spin. The result is the spin-independent part of the cross
section since the spin-dependent part averages to zero.

8. SPIN DEPENDENCE AND DOUBLE SCATTERING

We now calculate the asymmetry parameter for double scattering from
a Coulomb potential as an example of a spin-dependent calculation. The
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idea is that since the second-order correction to Coulomb scattering is spin
dependent, the scattered beam will be partially polarized even with an unpolar-
ized incident beam. The scattered beam can then impinge on a second target,
giving an observable asymmetry in the scattered intensity. This asymmetry
was first worked out by Mott (1929, 1932).

The spin after the first scattering is given by

Ŝf 5 Rfi Ŝi R̃fi

Ŝf } Tfi Ŝi T̃fi 5
Z 2 e4

q4 (2E 1 q)Ŝi (2E 2 q)

2
2Z 3 e6 A

q2 ^(p2 1 pf pi)(2E 2 q)&2

where we have only kept the lowest order terms in the spin-dependent and
spin-independent parts. The first term depends on the initial spin, but the
second term does not, so if we average over the initial spin, the spin-indepen-
dent part will determine the final polarization. We define S 0 to be the polariza-
tion in the plane Ŝ 0. This is a bivector in the plane of Ŝ 0 with modulus equal
to the polarization of the beam. Since the incoming beam is unpolarized, the
resultant polarization plane will be given by the spin-independent part of Ŝf

deboosted to rest. To get the polarization, we then divide by the magnitude
of the spin-dependent part, obtaining

S 0
f 5 2

2Z e2q2A
(4E 2 2 q2)

L̃f ^(p2 1 pf pi)(2E 2 q)&2 Lf

5
2Z e2q2A

(4E 2 2 q2)
2mpi ∧ pf

The beam after the first scattering is therefore polarized in the scattering
plane pi ∧ pf . The spin-dependent part of the cross section for the second
scattering is given by

1 ds
dVf

2
spin

5 2
4Z 3 e6mA2

q2
2(2p)2 (pf ∧ p2) ? S 0

f

5 2
64(2p)2Z 4a4q2

1m2 A1A2

q2
2(4E 2 2 q2

1)
(pf ∧ p2) ? (pi ∧ pf)

where the subscripts 1 and 2 refer to the first are second scattering, respectively
(e.g., q2 5 p2 2 pf). The asymmetry therefore depends on the cosine of the
angle f between the pf ∧ p2 and pi ∧ pf planes. The asymmetry parameter
d is defined so that the final intensity depends on f through the factor
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1 1 d cos f

In the case where pi ? pf 5 pf ? p2 5 0 (pi ? p2 5 2p2 cos f), we find the
first nonzero contribution to the asymmetry factor

d 5
64(2p)2Z 4a4m2A2

(4E 2 2 q2)
p4 q4

Z 2a2(4E 2 2 q3)

5 Z 2a2(ln 2)2 b2(1 2 b2)
(2 2 b2)2

in agreement with the answer quoted by Dalitz, (1951). It is of course only
the first approximation, and for large-Z nuclei, higher order corrections will
be far from negligible.

9. PARTIAL SPIN SUMS IN QED

Much of the simplicity and elegance of the above method comes from
the fact that we were considering a single electron. As a more complicated
example, consider electron–muon scattering. For each of the fermion lines,
one has a scattering operator with an M of the form

M 5 eDFgaJa

where DF is the photon propagator and Ja is given by

Ja 5 e^ũs gac2g0&s

Here ^. . .&S denotes the scalar and S projection, and provides the usual
complex structure, us is the normalized final state of the other particle, and
c2 is the incoming state of the other particle. Now we can proceed to calculate
cross sections as before if we sum over the final spin of the other particle
to get the result

.Tfi.2 5
2e4r1r2

m1m2q4 [p81 ? p 82p1 ? p2 1 p82 ? p1 p2 ? p81 2 m2
1p82 ? p2

1 m2
2 p81 ? p1 1 2m2

2m2
1 2 [q ? (Ŝ1 ∧ p1)] ? [q ? (Ŝ2 ∧ p2)]]

We could also calculate final polarizations and spins in the same way as before.
While the scattering operator approach offers little advantage if one is

just interested in unpolarized cross sections, it may still be useful for calculat-
ing spin-dependent results. If we are just interested in the spin dependence
of a particular fermion line, the scattering operator approach works well once
the spins of the other particles have been summed over. So in the scattering
operator approach, we still have to perform a spin sum, but only over the
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spins of the other particles. For example, above we summed over the final
spin of the second fermion. We could of course introduce spin projection
operators to single out particular spins of the other particles in the usual way.

10. CONCLUSION

We have shown how Hestenes’ STA formulation of Dirac theory can
be used to provide an elegant method of performing cross-section calculations.
The logic of calculating cross sections is simplified considerably and spin is
handled straightforwardly. There are no unnecessary spin sums and spin
dependence is manifest in the spin bivector dependence of the scattering
operator. It is a simple matter to calculate spin precessions, polarizations,
and spin-dependent results, and the results obtained are expressed in terms
of physical spin bivectors and the other scattering parameters. To perform
unpolarized calculations, we simply average over spins.

The multiparticle case is rather more complicated. We do not yet have
a neat method for performing arbitrary spin-dependent calculations, and have
to involve spin sums over terms involving complex conserved currents. How-
ever, we can still write down a scattering operator for any given fermion line
and retain the benefits of the scattering operator approach for calculations
involving the spin of the particle. For clarity, we have only considered electron
scattering, but all our results are easily extended to positron scattering and
electron–positron annihilation (Lewis, 2000).
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